\(\int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx\) [587]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 175 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=-\frac {2 \left (5 a^2+3 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a b \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 \left (5 a^2+3 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {4 a b \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 b^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \]

[Out]

4/3*a*b*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/5*b^2*sec(d*x+c)^(5/2)*sin(d*x+c)/d+2/5*(5*a^2+3*b^2)*sin(d*x+c)*sec(d
*x+c)^(1/2)/d-2/5*(5*a^2+3*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2
^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+4/3*a*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(
sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3873, 3853, 3856, 2720, 4131, 2719} \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=\frac {2 \left (5 a^2+3 b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{5 d}-\frac {2 \left (5 a^2+3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a b \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {4 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 b^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d} \]

[In]

Int[Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^2,x]

[Out]

(-2*(5*a^2 + 3*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a*b*Sqrt[Cos[c
 + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*(5*a^2 + 3*b^2)*Sqrt[Sec[c + d*x]]*Sin[c + d
*x])/(5*d) + (4*a*b*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d) + (2*b^2*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3873

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[2*a*(b/d
), Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = (2 a b) \int \sec ^{\frac {5}{2}}(c+d x) \, dx+\int \sec ^{\frac {3}{2}}(c+d x) \left (a^2+b^2 \sec ^2(c+d x)\right ) \, dx \\ & = \frac {4 a b \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 b^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {1}{3} (2 a b) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (5 a^2+3 b^2\right ) \int \sec ^{\frac {3}{2}}(c+d x) \, dx \\ & = \frac {2 \left (5 a^2+3 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {4 a b \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 b^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {1}{5} \left (-5 a^2-3 b^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{3} \left (2 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {4 a b \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 \left (5 a^2+3 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {4 a b \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 b^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {1}{5} \left (\left (-5 a^2-3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {2 \left (5 a^2+3 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a b \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 \left (5 a^2+3 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {4 a b \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 b^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.18 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.72 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=\frac {\sec ^{\frac {5}{2}}(c+d x) \left (-12 \left (5 a^2+3 b^2\right ) \cos ^{\frac {5}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+40 a b \cos ^{\frac {5}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+2 \left (15 \left (a^2+b^2\right )+20 a b \cos (c+d x)+3 \left (5 a^2+3 b^2\right ) \cos (2 (c+d x))\right ) \sin (c+d x)\right )}{30 d} \]

[In]

Integrate[Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^2,x]

[Out]

(Sec[c + d*x]^(5/2)*(-12*(5*a^2 + 3*b^2)*Cos[c + d*x]^(5/2)*EllipticE[(c + d*x)/2, 2] + 40*a*b*Cos[c + d*x]^(5
/2)*EllipticF[(c + d*x)/2, 2] + 2*(15*(a^2 + b^2) + 20*a*b*Cos[c + d*x] + 3*(5*a^2 + 3*b^2)*Cos[2*(c + d*x)])*
Sin[c + d*x]))/(30*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(632\) vs. \(2(203)=406\).

Time = 33.47 (sec) , antiderivative size = 633, normalized size of antiderivative = 3.62

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 b^{2} \left (24 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-12 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-24 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{5 \left (8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {2 a^{2} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+4 a b \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(633\)
parts \(\text {Expression too large to display}\) \(760\)

[In]

int(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/5*b^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2
*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4
-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/
2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-3*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))*(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a^2/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-(sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellip
ticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))+4*a*b*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos
(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2
^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.27 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=\frac {-10 i \, \sqrt {2} a b \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 10 i \, \sqrt {2} a b \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (5 i \, a^{2} + 3 i \, b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-5 i \, a^{2} - 3 i \, b^{2}\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (10 \, a b \cos \left (d x + c\right ) + 3 \, {\left (5 \, a^{2} + 3 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 3 \, b^{2}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{15 \, d \cos \left (d x + c\right )^{2}} \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

1/15*(-10*I*sqrt(2)*a*b*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 10*I*sqrt(2
)*a*b*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(5*I*a^2 + 3*I*b^2)
*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*
(-5*I*a^2 - 3*I*b^2)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x
 + c))) + 2*(10*a*b*cos(d*x + c) + 3*(5*a^2 + 3*b^2)*cos(d*x + c)^2 + 3*b^2)*sin(d*x + c)/sqrt(cos(d*x + c)))/
(d*cos(d*x + c)^2)

Sympy [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**(3/2)*(a+b*sec(d*x+c))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^2*sec(d*x + c)^(3/2), x)

Giac [F]

\[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^2*sec(d*x + c)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx=\int {\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

[In]

int((a + b/cos(c + d*x))^2*(1/cos(c + d*x))^(3/2),x)

[Out]

int((a + b/cos(c + d*x))^2*(1/cos(c + d*x))^(3/2), x)